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ABSTRACT

Two-dimensional equations of motion of doubly-rétated quartz plates
for the thickness-shear, flexure, and extensional vibrations under in~
plane initial stresses are employed to predict changes in the fundamental
thickness-shear frequencies due to initial stresses. Two types of initial
stresses are considered: (1) stresses due to a pair of diametral forces,
and (2) stresses due to steady accelerations for a three-point "'T'' shaped
mount and a four-point ''+' shaped mount configurations.

Force sensitivity and acceleration sensitivity coefficients are
computed and compared with experimental data and existing computed results.
For both "'T'' shaped and ''+" shaped mount configurations, mount orientations
corresponding to the maximum and minimum of acceleration sensitivity are

predicted.
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§. INTRODUCTION

Changes in the resonance frequencies of doubly-rotated, circular
quartz plates are investigated when plates are subject to in-plane initial
stresses. Two types of initia) stresses are considered: (1) stresses due
to a pair of static diametral forces, and (2) stresses due to steady
accelerations when the plate is supported by a number of ribbon supports

attached to the edge of the plate.

In a previous paper, a system of six two-dimensional equations of motion

of crystal plates was derived for the vibrations of the flexure, extension,
face-shear, thickness-shear, thickness-twist, and thickness-stretch modes
subject to initial stresses.l By studying the free vibrations of these

six coupled modes (without initial stresses) in a number of doubly-rotated
cuts of quartz plate (yxw? /¢, with 8 = 33.9°, 0 < ¢ < 30°), we found
that in the vicinity of the fundamental thickness-shear resonances, only
thickness-shear, flexure and extensional modes are predominant.2 Hence,
only these three modes are retained in the present study, and their govern-
ing equations are given in Section Il. In Section 111, solutions of these
equations are derived by the Rayleigh-Schrédinger method of perturbation.
It is seen that the frequency changes, in turn, depend on the solutions

of two related problems, i.e., solutions of thickness-shear, flexure, and
extensional vibrations without initial stresses, and solutions of initial
stress problems due to forces or accelerations. These solutions are

given, respectively, in Sections IV and V. Finally, thg changes of the
fundamental thickness-shear resonances are computed in Section Vi.

The present study is an extension of our previous investigations in two

aspects: (1) the stress-strain relations when referred to the plate axes
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can now accommodate any doubly-rotated cut of plate, and (2) the coupled
equations of motion for plate vibrations have been extended to include the
extensional mode in addition to the thickness-shear and flexural made:s."3
We note that the solutions of initial stresses due to diametral forces and
due to accelerations are unified as one by realizing that the former is a
particular case of the latter as discussed in Section V.

For plates subject to diametral forces, the changes of resonance
frequencies, represented by the force sensitivity coefficient Kf, are
predicted as a function of the force orientation for various cut orientations
such as AT, (yxwf)10°/33.9°, FC, IT, SC, and rotated X-cut. The predicted
results are compared to the experimental values of Ballato,h Ballato and
Lukaszek,5 and calculated values of EerNisse’ by a variational method.

For plates subject to accelerations, a three-point ''T"-shaped mount
and a four-point ''+'-shaped mount configuration are considered. The changes
of resonance frequencies, represented by the acceleration sensitivity
coefficient Ka’ for an SC-cut plate, are predicted as a function of the
direction of acceleration for various mounting orientations. Also values

of IK which is proportional to the ''2g'" tip over results, are

almax’
computed as a function of mounting orientation a.

it is found that for the "'T''-shaped mount the minimum of acceleration
sensitivity occurs at orientation angle o = -15° and a = 75°, while the
maximum acceleration sensitivity occurs at a = +15° and o = -75°. For

the ''+''-shaped mount, the minimum of lKal occurs at a = 0° and a = 45°,

while its maximum occurs at o = 15° and o = 75°.
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}1. EQUATIONS OF MOTION FOR CRYSTAL PLATES UNDER INITIAL STRESSES

Let xc, Yc, and Zc be the crystallographic axes of a-quartz,
among which Zc is the axis of threefold symmetry (optical axis) and xc
is one of the three axes of twofold symmetry (electrical axis). The relations
between the crystallographic axes and the plate axes of a rotated Y-cut
and a doubly-rotated cut of quartz plate are shown in Fig. 1, in which X,

Y, Z or Xps %o, x3 denote the plate axes in a right-h¢ :d coordinate
system.

A system of six equations of motion for the incrementa . tions of
the six lowest modes under static initial stresses was derived in a previous
paper.‘ By studying the free vibrations of these six coupled modes, i.e.,
extension, face-shear, flexure, thickness-shear, thickness-twist and
thickness-stretch, in a doubly-rotated quartz strip with a pair of traction-
free edges, we found that for a series of doubly-rotated cuts with 6 = 33.,9°
but ¢ = 0, 10°, 15°, 19.1°, 21.9°, 30°, and in the vicinity of thickness-
shear cut-off frequencies, the amplitudes of the thickness-shear, flexure,
and extension are much more predominant than the other three modes.2
Hence by neglecting the coupling with face-shear, thickness-twist and
thickness-stretch modes in Eqs. (55) of Ref. 1, we have the two-dimensional
stress equations of motion for thickness-shear, flexure and extensional

vibrations under initial stresses:
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where T(o) T;o), Téo) and U(O) U;o), Ué') are, respectively,
the non-vanishing components of stress and displacement due to the in-
plane initial stresses, téo) and t(l) are the zero and first order
incremental stress components, and ufl), uéo) and u§°) are the
components of displacement, respectively, associated to the thickness-
shear, flexure and extensional modes of incremental vibrations. ;
Also from Ref. 1, we have the linear stress-strain and strain-
displacement relations for initial fields:
180 2pc g (2)
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in (2), b is one-half of the thickness and cpq are the second order
elastic stiffnesses of the plate. In obtaining the last relation in (3),
we have assumed that the in-plane rotation associated with initial deforma-
tion is negligible.

The stress-strain and strain-displacement relations for the incremental
vibrations are deduced, respectively, from Eqs. (50) and Egqs. (53) of

Ref. 1 as follows.
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where

(0) (o)
cpq cpq + cpqrer (6)

and C . are the third-order elastic stiffnesses referred to the plate
axes (xi) of the crystal plate. In (4), correction factors K(p) have
been introduced in order to improve the accuracy of the dispersion relations
from the present approximate equations of motion. Their values will be
given in Section IV when the free vibrations of the crystal plates without
initial stresses are studied.

By considering incremental vibrational modes dependent on x, only,
1

we may write

uf') = w(x,)eiwt ,
uéo) = bv(x])eiwt R (7)
ul(o) = bu(x] )ei(‘Jt

Substitution of (7) into (5), then into (4) and (1) leads to the displace-

ment equations of motion for steady vibration

le’,, + Tzw" + T3w + Thv,ll + TSV.l + TGU,II + T7u.‘ = Q0w ’
= = = = = = = 2
F‘w"' + sz,l + F3w + Fkv,ll + F5v” + F6u,ll + F7u'l = =0y .
= = - = = = = 2
E‘w’l] + Ezw’I + E3w + Ehv,ll + ESV,I + E6u,ll + E7u'l = -0"u ’

(8)

where Q= m/wI is a dimensionless frequency, wy = (3K2C66/pb2)‘/2

the lowest thickness~shear cut-off frequency and Kz = nz/lz.
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in (8), Ti’ .?;, and E‘ are functions dependent on the initial
fields of stress and displacement and the material properties Cpq and

Cpqr. The explicit expressions of these functions are given as follows:
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- .
z b (0),,(0) (o), (0) (0) (1) (0)
f Eg = oo, (KI ;[chll Uzt ¥ G5 V2,3 + K%glyg [' + Y )] [' * ”),1)?,1

: 0),(0) , .(0),(0) 0, , yM (0)

+ 3[‘1°§1 Upy + Cgg Uy *+ Kéglgg’ |1+ U ] [1 + U|,|]$,3

(0),,(0) . .(0),(0) (0) [ (0)
g * 3[}1°51 Y2,1 * Co5Uz,3 * Rglge |V T U2 ]_ U130,

. 3[% cO(0) | (@0) | O, Ué:)]“ 4 (0) ) ,

1°31 92,1 * t35 72,3 36 | 171,34,3

2 11 1,1 15 °1,3 1,1

E = 3Kbc“ ;[F(O)[' . U(o)] . C(o)u(o)] [1 . U(o)]

S (O ) R

2
= b (0) (0) (0),(0) (0)
Er = 2 (KI ‘[“lcll [' * Ul,l] * s ”1,3] [‘ * "1,1]%,1

(0) (0) (0),,(0) ] (0)
+ ;[KICSI LI + Ul,l] + t:55 UI,3_ [l + U"‘H’s

+ 3[%‘C(O){l + !0 ] + c(°)u(°)T u{0)

51 ),) 55 71,3] 71,3),1
q
(o) (o) (0),,(0) { ,,(0) ! (o) (0)
A+ o) + 9T 5 ) )
(9)
e P SRt ST - " :
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Once the initial fields of stress and displacement are determined from
the solutions of initial stress problems which will be discussed in
Section V, then these functions of (9) may be regarded as known functions

of 3! and X3 Each of these functions may be separated into two parts as
=T+, Fo=Fo+f, E =g +e, (10)

where Ti’ Fi and Ei are associated with vibrational motions without
initial stresses, while ti’ fi’ and e, are the quantities contributed
by the initial fields.3 Therefore, by setting initial stresses and displace-

ment gradients in (9) equal to zero, we obtain

b"C K.k, C
no 3.<2c” L Ty Tgmek, Ty "‘gsr '
66
bC bC
b 16 11
F, = F, = 2, F,=E =E =35>, E = ,
2 4 3 6 2 4 3|<C66 6 3KZC“
Ty=Ty=Tg=Fy=Fy=F o =Fy=E =E =E =E, =0 . ()

The explicit expressions for ti’ fi and e, are obtained by inserting

(9) and (11) into (10).
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til. SOLUTIONS BY PERTURBATION METHOD

For the thickness-shear, flexure, and extensional vibrations under

static initial stresses, (8) can be expressed in the matrix form

LV = AV (12)

where A = -QZ is the eigenvalue, V = (w,v,u)T the displacement vector,

and L the linear differential operator. By inserting (10) into (B), we

may separate L into two parts

L=1,+Q (13)
where
T+ Ty T53, 729
Lo = F23 Fiud1y Fed1
| E2% €4y B¢y , (14)
TR LIRAT I T IR LN .9,
Q= £13)4F 3465 £,9) 4720, F6211+659,
eza' + e, eh311+e58] e68‘|+e73‘ (15)
L

L

initial stresses, while Q

effects of the initial stresses inside the plate.

0 is the part of the operator associated with vibrations without

is the part of the operator containing all the

in general, initial

stresses also affects the traction boundary conditions, for instance, as

shown in Eqs. (52) of Ref. 1,

However, we will neglect contributions of

initial stresses to the traction boundary conditions by assuming that

these effects at the edge of the plate have little influence on the




fundamental thickness-shear vibration whose displacement is mostly confined
in the central portion of the plate. For instance, by neglecting the

initial fields in (4), the traction-free conditions

L téo) = tfo) =0 at x, = +a (16)

1
may be expressed by

PV = 0 at x; = ta, (7

where the linear operation P is given by

113' 0 0

P = kkeCeg KKeCeed) KK Cyed) (18)
KK6C'6 KK6c1631 KKICHBl

1,3

From previous calculations of the initial stress fields, we found
that the values of t., fi' and e, are of several orders of magnitude
smaller than those of Ti’ Fi’ and Ei’ respectively. Hence, we employ
the Rayleigh-Schrodinger method of perturbation to calculate the frequency
changes due to initial stresses.

Let Vn and An be the eigenvector and eigenvalue, respectively,

of the nt" mode satisfying (12) and (17). Therefore,

v, =XV, PV =0 at x, = ta (19)

where H

L=ly+eQq , Q=eQ . (20)

A small parameter € is introduced in (20) to indicate the smallness of

Q as compared to Lo, while Ql is assumed to have the same order of

magnitude as Lo. We let




<
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(21)

An - Ano + ekn‘ + .., .

Substitution of (21) into (19) and collection of the zero and first

order terms of € leads to

LoVro = AnoV PVo=0 atx =+a (22)

0'n n0 ' n0’ 1

Lo¥ar * QVno = *no¥n1 * AniVnor PVy "0 At x = ta . (23)

We see that (22) corresponds to plate vibrations without initial
stresses and with traction-free edge conditions. Lo is a symmetric
operator and Vno's are free-vibrational modes forming a complete,

othonormal set (after normalization). Therefore

vmo * vnO = 6mn (24)

In (23), A,y and V. are the first order perturbations of A

and Vn, respectively. We let

vnl * E‘ anmvnO (25)

By inserting (25) into the first equation of (23), multiplying the

resulting equation by Vo 2nd employing (24), we obtain

Anl = vnO * Ql ' vnO

or exn| = vno . eQI . Vno - vnO + Q- vno : (26)

The second equation of (23) is also satisfied by (25) because Voo

satisfy the second of (22).

We choose n=1 to indicate the fundamenta) thickness-shear mode

of vibration. From the second of (21), we have




(27)

2 2
M =X+ or @y, + el

where 9'0 is the resonance frequency of the fundamental thickness-shear

without initial stresses. The frequency changes, by (27) and (26), can

be expressed by

2 _ 2
Y B T W TR T WAt RN T Yt 1 (28)
o o 22, %o o

To compute the changes of frequencies from (28), we need Yio and

klo from the solutions of free vibrations of crystal plates (see Section
IV) and Q from the solutions of initial stress problems (see Section V).
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IV. THICKNESS~SHEAR, FLEXURAL AND EXTENSIONAL VIBRATIONS

OF DOUBLY-ROTATED QUARTZ PLATES

For the resonance frequencies (AIO - -9?0) and the vibrational

modes = (w, v, u)T, we should look for solutions satisfying the two-

V1o
dimensional governing plate equations and traction-free conditions at the
edge of a circular crystal plate. An analytical solution for such a
problem is extremely complex and difficult to obtain, if not impossible.
However at predominantly fundamental thickness-shear resonances, the
vibrational motion is mostly confined in the middle portion of a flat
plate. This mode is concentrated even more in tﬁe central portion of a
contoured or electrode plated plate.6'7 Furthermore, the thickness-

shear resonance frequencies are shown to be insensitive to the width of

a rectangular plate by Sykes8 and predictions from one-dimensional
solutions are shown to be very accurate when they are compared with experi-

3,10 Therefore in this section of the paper, the circular

mental data.
plate is approximated by a square plate of equivalent area and one-dimensional
solutions are obtained to predict resonance frequencies and vibrational
modes.

The one-dimensional equations of motion and traction-free edge con-
ditions at x, = *a (2a =/m R, R = radius of the circular plate) are

given by (22), with L, and P defined, respecitvely, by (14) and (18),

0
and n = |,
We assume that displacement Vio ™ (w.v,u)T has the vibrational form

we g A, cos £ x ’
q=1 1q q)




i

R,

D 19
%
v = A, sin & x ,
’ 1 2 at
3
us= zl A3q sin qul . (29)
q-
I
By substituting (29) into the first of (22), we have the dispersion
relation (9 vs. Eq, q=1,2,3)
. 2 _ s2- _ g2z _EFf
-8t t16 416
222 2_z2- z =
ch|6 30 e:qc66 gqc“_z_ 0 (30)
c
FE Et 2 .91
! Eat16 Eqt66 T-Ceg 32
]
where Eq = £ p are the dimensionless wave numbers and the roots of the
s * above bicubic equation in Q and E for a given value of , and
T =x, \k, C_/xC (31)
Pq (p) (q) "pq 66
From the linear, homogeneous equations governing the displacement
o

amp)itudes, we obtain the amplitude ratios
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2 22= 2=
3 -chll -gqc|6
D = . (33)
2= 2 z2=

Correction factors K(p) introduced in (4) and consequently appeared

in (9), (11), (30) and (31) are given below

[ if p=3,5
K = —— if p=2,4
J /12
“G) " K, it p= (34)
il
KK, = — 0 if p=6
6
| /7 ¢

In a previous study2 of free vibrations of the first six modes in
doubly~rotated quartz plates, correction factors are introduced to correct
the cut-off frequencies of thickness-stretch, thickness-twist, and thickness-

shear modes (or called a, b, and ¢ modes, respectively) by letting

| if p=1,3,5
' =
(p) < =T if p=2,4,6.
12

Since only three of the six modes are included in the present study, two
new correction factors K and Kg are introduced in (34) to correct

the behavior of the dispersion relation from the three-mode theory as

compared to that of the six-mode theory. Ke is employed for correcting
the thickness-shear cut-off frequencies and Ky for adjusting the slope
of the extensional branch (E]). The values of Ky and e for various

cuts of quartz plate are listed in Table 1.

DO ——
! : AR

PRSI . e = e —_
> . — Ty ottt - ———
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Dispersion curves computed from (30) for an $C-cut quartz plate are
shown in Fig. 2 by the solid lines as compared with those in dashed lines
computed from the six coupled equations of motion.2 it may be seen that
the three corresponding frequency branches from the three-mode and six-
mode theories agree closely for frequencies up to and including the
fundamental thickness-shear cut-off frequency.

Substitution of (29) into the second of (22) for traction-free edge

conditions leads to three linear homogeneous equations on A|q

[Mpq]{Alq} =0, p,a= 1,2,3 (35)
where

Mlq = c,]gq sin Eqa ’

qu = [K|C6‘u3ng + KK6666(1 + azng)]cos Eqa ,

M3q = [K]C‘]a3q£q + KK6C16(1 + azqiq)]cos Eqa . (36)

For nontrivial solutions of (35), we have

det Hpq =0 (37)

which is the frequency equation for the thickness-shear, flexural, and
extensional vibrations.

Calculations of the resonance frequencies of SC-cut plates are
performed and illustrated in Fig. 3. By comparing Fig. 3 with Figs. 4
and 5, which are the corresponding frequency spectra calculated from the
six-mode theory,2 we see that the present three-mode theory gives very
good predictions for frequencies of thickness-shear, flexural, and

extensional modes.
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From (35), we can also calculate the amplitude ratios
AII: A,2 : Al3 =} : B2 : 83 (38)
if we choose All as the reference. Then the displacement field (29) :
can be expressed in terms of a and B (with Bl = 1)
- Pq q
( ]
;
B cos £ x
q=1 9 q!
b4 v 3
Vie=1 v 1=Ay, { qZ‘Bqazq sin qul : (39)
u
§ ‘
B o, sinkE x
q=1 9 3q q’l
The remaining constant Al\ can be determined from the normalization
s condition (24), i.e.,
W
Vio * Vio - JA {w v u}’vt dA = |
4 u
|
. @
¢
;
!
(¢
!
»
!
; 8
! ]
T . R ;,..,i -”&:‘t:‘\‘"’::’.i"?‘- -
W | = G- soicih bl
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V. INITIAL STRESSES IN CIRCULAR PLATES

Two types of initial stress problems are considered in this section.

1. Circular plates subject to a pair of diametral forces. i

A circular plate of diameter d(= 2R) and thickness 2b is referred j
to a rectangular coordinate system X, Y, Z (or xi) with the XZ plane
being the middle plane of the plate. Let N be the magnitude of the
compressive diametral forces and ¢ (the azimuth angle) to denote the
orientation of the force with respect to the X axis as shown in Fig. 6.

2, Circular plates subject to in-plane, steady acceleration.

The same plate is now supported by a number of metal ribbons attached
to the edge of the plate as shown in Fig. 7. The locations of the supports
are denoted by angles Ay i =1,2,3...s for s supports (s 2 2). The

orientation of the body force G (force per unit volume) which has the

opposite sense to the acceleration is denoted by the angle Y with
respect to the X axis as shown in both Figs. 1 and 7. Let N, and T,
be, respectively, the normal and tangential components of the force from
the support at a, to the plate.

Effects of initial stresses of both types on the changes in the
thickness-shear resonance frequencies had been studied previously for
rotated Y-cuts of quartz plate."B In both cases the initial stresses
were obtained from solutions for isotropic plates, then strains were cal-
culated from the anisotropic stress-strain relations. The predicted
results were compared with experimental data with good agreement for
AT- and Y-cuts.

In the present paper, the same approach is adopted. Since the initial

stresses due to acceleration, problem (2), have been given in detail in Ref.

3, Egs. (1) - (11), they will not be duplicated here.




Mg o

e i

.

We would like to note that the solution for the problem (1), initial
stresses due to the diametral forces, can be deduced from that of the

problem (2) by setting

s =2, E = 0,

o = v, a, = oy + 180°,

N, = N, = =N,

T,=T,=0, (41)

in Eqs. (1) - (11) of Ref. 3.

In a study by Janiand, Nissim, and Gagnepain,l‘ initial stresses
were obtained directly for the anisotropic plates and employed to predict
the changes in frequencies. It showed some improvement in predictions
of frequency changes due to diametral forces, but almost no improvement

for the case of acceleration effect.
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VIi. CHANGES IN RESONANCE FREQUENCIES

Once the resonance frequencies Alo(- -Q?o) is obtained from (37),
displacement field V,, from (39), and Q from (15) and initial fields
given in Section V, the frequency changes due to inijtial stresses can be

obtained by numerical integration of (28)

AF 1 J '
—  em—— v *Q-V dA (28)
fo 2X|0 A 10 10

where A is the electroded area of the plate.

(1) Effect due to a pair of Diametral Forces

Following Ratajski's‘2 definition of force sensitivity coefficient,
we have 1

AF 1 d Af bd /o
LI e ——/ S =F(6,0;¥) (42)
f fo N f07m fo N C66

where N is the magnitude of diametral forces, m the order of harmonic
overtones of the thickness-shear frequencies, and 0,¢ are the angles of
rotation for doubly-rotated cut as shown in Fig. 1.

Computations of Kf as a function of the orientation of the
diametral forces | are made for circular quartz plates of AT-cut (yx%)33.9°,
(yxw2)10°/33.9°, FC-cut (yxwf)15°/33.9°, I1T-cut (yxw)19°/33.9°,
SC-cut (yxw)22°/33.9°, and rotated X-cut (yxwk)30°/33.9°. The results
are shown in Figs. 8 to 13, respectively. They are compared with the

5

experimental results of Ballato.h Ballato and Lukaszek,” and the calculated

result of EerNisse.? The results of Refs. 5 and 11 both show the improve-

ment of predicted frequencies by employing the initial stress field of

anisotropic plates under a pair of diametral forces.
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(2) Effect due to Steady Accelerations

We define the acceleration sensitivity coefficient
K - Ai . . _2- - Aﬁ 8/‘"
a f/m ¥

0 0 0 qd ’_p%e

where B = ngp(ﬂbdZ/Z) is the magnitude of body force on the plate and

= F(6,8;0,:) (43)

ng the acceleration in terms of the acceleration of gravity.

As indicated in (43), Ka is also dependent on the positions of
supports of the plate. Two support configurations are considered as
follows.

(a) Three-point '"T' shaped mount

A support configuration of a circular plate with three supports

of which two supports are 180° apart and the third is 90° from the
first two forming a *'T'" shape is called a ''T" shaped mount as shown in
Fig. 14, The angle a denotes the orientation of the '"T'' shaped mount,
while Yy indicates the orientation of the body force due to acceleration.

Calculations are made for a circular SC-cut plate (yxwf)23.75°/33.9°.
Ky is computed as a function of ¥ for a = 0°,-15°,-30°, and -45°,
and is plotted in Fig. 4. We see that both the magnitude and location

of |Kk_]

a! max change as the support orientation o changes. By repeating

the above process of calculation, we obtain |Ka|max as a function of

o as given in Fig. 15. It can be seen from Fig. 15 that the minimum
acceleration-sensitivity occurs at o = -15° and +75°, while the maximum
acceleration-sensitivity occurs at a = +15° and a = -75°, The variation
of acceleration sensitivity as a function of a for ''T'' shaped mount

has been studied experimentally by Goldfrank and Warner and their experi-

13

mental values are shown as solid dots in Fig. 15 for comparison.

eyt v -
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The result shown in Fig. 15 is also consistent qualitatively with the

experimental data by Kusters, Adams and Yoshida,lh for their study is
on a two-point mount configuration (see Fig. 2 of Ref. 14). We note the
convention for the mounting angles in Ref. 14 is the opposite of that

employed in the present paper.

(b) Four-point '+'' Shaped Mount

A four-point support configuration of a circular plate for which
each support is 90° from its neighboring supports is called a four-point
"+'' shaped mount. Computations on an SC-cut circular plate have been
carried out in similar manner as in case (a). The plots of Ka vs. ¢ for

various values of a and |K | vs. @ are given in Figs. 16 and 17,

a'max
respectively.

Figure 17 reveals that the minimum of acceleration sensitivity occurs
at o= 0° (or 90°)and o = 45° (or -45°), while the maximum occurs at
a=15° and o = 75°. It may be seen that there exists a wider '‘valley"
at a = 45° than that at o = 0°., |t therefore appears to suggest that
it is more likely to obtain experimentally a |Ka| = minimum near a = 45°
than at o = 0°, Nevertheless, a minimum of IKaI at o = 0° had been
attained experimentally by Varner.15

The effect of small deviations of the support locations from the 90°
angle in the '+' shaped mount has also been investigated by allowing one or
two supports having an angle of deviation § for -3° < § < 3°. Results from
several series of computations shows that the magnitude of acceleration
coefficient |K | increases as |8| increases for small deviations

=3° < § < 3°. However, the |K vs. a relation remains practically

a | max

the same as that shown in Fig. 17, therefore it is independent of 6.
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In al) the calculations, we have employed Bechmann's values of the
second-order elastic stiffnesses'6 and those of Thurston, McSkimin and
Andreath for the third-order elastic stiffnessesl7 of quartz. For calculat-
ing support reactions from ribbon supports due to accelerations, we have
assumed each ribbon support is made of nickel and acts as a cantilever
with length £ = 6.35 mm and rectangular cross section (h] = 0.076 mm

and h2 = 1,270 mm). The Young's modulus for nickel is E = 4,82 x 10°

dyn/cmz. For more detail, see Eq. (2) of Ref. 3.

ey, - -
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Table 1

Values of correction factors Ky and Kg

for doubly-rotated quartz plates

Doubly rotated quartz plates K K
(yxwl) ¢/6, 6=33.9° 1 6
AT-cut, ¢ = 0° t.0 1.0
¢ = 10° 1.0116 0.9818
FC-cut, ¢ = 15° 1.0214 0.963
iT-cut, ¢ = 19.1° 1.0252 0.9492
SC-cut, ¢ = 21.9° 1.0252 0.9397
Rotated~X-cut, ¢ = 30° 1.0146 0.918
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G.

Fig. 7 A circular plate under body force




08l

*6°E€ (¥xA) @1e(d jnd-jy 404592404 (eIJBwe)p 4O Jjed

3yl jo @ 2|6ue yInwjze ayl 40 uoiIdUNy @ se Iy Jua 2144200 AI{A|IISUIS 92404 g °614

oSl

ozl

A

06

09

ot

Juasesy

..‘wzh.m ——— e

Y4
/4
/

SR

N\
N

/|/

7 \\

Fi

(n/sw_01) by




08l

"o6°€€/,01 (ymxd) 21e1d ziuenb oy 4 *sa Iy g <Byy

rh

ost ozl 06 09 ot 0
: . oc-
Juesalyg
OSSININT o e e
woxsmyn) | owiieg‘eeq WOIA T T I
ot~
o X
IO-V
[ ]
ot €
A
-
< *. IJbN
ot




“6°€€/.51 (3MxA) a3e(d In3-34 405 @ *sa Py o1 6y

A

o8l 0sl ozl 06 09 ot ooN
¥ L}

ess|NI03 ———
._onu!...._doo-._on.uacnicuwu HHH

(w/sw_o1) ¥y




* 6°€E/,1°61 (3MxA) a1eid no-py 405 4 "sa Iy (| By

h

ost 0s1 ozl 06 09 o¢ 0 k.
| | ot- ﬁum :

ﬁ:‘”.h‘ e———

OSSINIO] o= e =
RezsHTI R ovyeg’eiegd WOII = e

oz~

oz

TR
. > o ey e

! Tm: »
»
- J"E,@w”&f,uf‘



h3

” T I ————

B

*6°€E/.6°1Z (yMxA) @3e1d Ind-3g 4oy B °sAa Iy 7y 61y

rh

081 (0191 ocl 06 09 ot 0
] 1

ot~
1Y Y 1 YT J—
OSSINI®T v o=

I1IXI1

yozTSMHNY y Ovyeg‘eiIea WO DI *

oz -

(vs-w_01) 3y

41




*06°€€/,0€ (¥MxA) s3eqd Ind-x-pajeloy 405 M °SA W g1 Bia

h

08l 0s1 ozl 06 09 ot

Jueseigy

»ezsENN] A OlBYSG’ I8G WODIF + —~—Q—

=
A
-l
Sy
S,
[]
. t 4
| S
g - 4
3 L
ﬂ
I m
} Ot = ¢
(174

- - - o [ [ o e L |
. . . i I e D ;

v —— . g - -

o L e aai. e b



b5

09¢

Sie
¥

0L2

*junow padeys 1,
uoj3eludalso 3yl jJO uojjdouny e se

Gee
ALl

o

yiim a1ejd 3Ind-3s 404 ‘@ 22404 Apoq jO

N JU91D144902 AJIAIIISUIS UOIIBII|IIDY 4|

1)

‘B4

D
4,01 - °¥

(N/SW)




*junow padeys 1, Yi!m a1e|d Ind-)S 404 ‘D "SA

(N/SW) Ol "°"‘|°x |

X NOILIIQ3¥d LN3IS3HUd —

H3INHYM ONV NNVNA109 18
AB VAV TWAN3IWNIHIDXI ©

0 -~
- - - "~ v - o - -

L Tt et BRI A B 55t s i



-Junow padeys .+, 41im 3ie|d IN3-35 40§ ‘M "SA Ty 91 613

o/

09¢ Sie 0.2 G2e 08l cel 06 SY 0
T T T Y L 4 LA W—l

TR

k7

(N/SW) g0t - ™

-




48

*junow padeys ,,+,, Yiim aie|d Ind-9§ 4Oy ‘D °SA xme_mz_ L1 614
oD
06 09 0, 0 Og- 09- 06-
T 1 L T T 0O
- 1

XDW | o
(N/SW) 01 - | xl







